Network Security

Chapter 2
Basics of Cryptography

- Overview Cryptographic Algorithms
- Attacking Cryptography
- Properties of Encryption Algorithms
- Classification of Encryption Algorithms
Cryptographic Algorithms: Overview

- During this course two main applications of cryptographic algorithms are of principal interest:
 - *Encryption* of data: transforms plaintext data into ciphertext in order to conceal its’ meaning
 - *Signing* of data: computes a *check value* or *digital signature* to a given plain- or ciphertext, that can be verified by some or all entities being able to access the signed data
- Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- Principal categories of cryptographic algorithms:
 - *Symmetric cryptography* using 1 key for en-/decryption or signing/checking
 - *Asymmetric cryptography* using 2 different keys for en-/decryption or signing/checking
 - *Cryptographic hash functions* using 0 keys (the “key” is not a separate input but “appended” to or “mixed” with the data).
Attacking Cryptography (1): Cryptanalysis

- Cryptanalysis is the process of attempting to discover the plaintext and/or the key.

- Types of cryptanalysis:
 - Ciphertext only: specific patterns of the plaintext may remain in the ciphertext (frequencies of letters, digraphs, etc.)
 - Known ciphertext / plaintext pairs
 - Chosen plaintext or chosen ciphertext
 - Newer developments: differential cryptanalysis, linear cryptanalysis

- Cryptanalysis of public key cryptography:
 - The fact that one key is publicly exposed may be exploited.
 - Public key cryptanalysis aims at breaking the cryptosystem itself and is closer to pure mathematical research than to classical cryptanalysis.

- Important directions:
 - Computation of discrete logarithms
 - Factorization of large integers
Attacking Cryptography (2): Brute Force Attack

- The **brute force attack** tries every possible key until it finds an intelligible plaintext:
 - Every cryptographic algorithm can in theory be attacked by brute force
 - On average, half of all possible keys will have to be tried

<table>
<thead>
<tr>
<th>Key Size [bit]</th>
<th>Number of keys</th>
<th>Time required at 1 encryption / μs</th>
<th>Time required at 10^6 encryption / μs</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>$2^{32} = 4.3 \times 10^9$</td>
<td>$2^{31} \mu s = 35.8$ minutes</td>
<td>2.15 milliseconds</td>
</tr>
<tr>
<td>56</td>
<td>$2^{56} = 7.2 \times 10^{16}$</td>
<td>$2^{55} \mu s = 1142$ years</td>
<td>10.01 hours</td>
</tr>
<tr>
<td>128</td>
<td>$2^{128} = 3.4 \times 10^{38}$</td>
<td>$2^{127} \mu s = 5.4 \times 10^{24}$ years</td>
<td>5.4×10^{18} years</td>
</tr>
</tbody>
</table>

Average Time Required for Exhaustive Key Search
Attacking Cryptography (3): How large is large?

Reference Numbers Comparing Relative Magnitudes

<table>
<thead>
<tr>
<th>Reference</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seconds in a year</td>
<td>3×10^7</td>
</tr>
<tr>
<td>Seconds since creation of solar system</td>
<td>2×10^{17}</td>
</tr>
<tr>
<td>Clock cycles per year (50 MHz computer)</td>
<td>1.6×10^{15}</td>
</tr>
<tr>
<td>Binary strings of length 64</td>
<td>$2^{64} \approx 1.8 \times 10^{19}$</td>
</tr>
<tr>
<td>Binary strings of length 128</td>
<td>$2^{128} \approx 3.4 \times 10^{38}$</td>
</tr>
<tr>
<td>Binary strings of length 256</td>
<td>$2^{256} \approx 1.2 \times 10^{77}$</td>
</tr>
<tr>
<td>Number of 75-digit prime numbers</td>
<td>5.2×10^{72}</td>
</tr>
<tr>
<td>Electrons in the universe</td>
<td>8.37×10^{77}</td>
</tr>
</tbody>
</table>
Important Properties of Encryption Algorithms

Consider, a sender is encrypting plaintext messages \(P_1, P_2, \ldots \) to ciphertext messages \(C_1, C_2, \ldots \).

Then the following properties of the encryption algorithm are of special interest:

- *Error propagation* characterizes the effects of bit-errors during transmission of ciphertext to reconstructed plaintext \(P_1', P_2', \ldots \).
 - Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit.

- *Synchronization* characterizes the effects of lost ciphertext data units to the reconstructed plaintext.
 - Some encryption algorithms can not recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages.
 - Other algorithms do automatically re-synchronize after 0 to \(n \) (\(n \) depending on the algorithm) ciphertext bits.
Classification of Encryption Algorithms: Three Dimensions

- The type of operations used for transforming plaintext to ciphertext:
 - *Substitution*, which maps each element in the plaintext (bit, letter, group of bits or letters) into another element
 - *Transposition*, which re-arranges elements in the plaintext

- The number of keys used:
 - *Symmetric ciphers*, which use the same key for encryption and decryption
 - *Asymmetric ciphers*, which use different keys for encryption and decryption

- The way in which the plaintext is processed:
 - *Stream ciphers* work on bit streams and encrypt one bit after another:
 - Many stream ciphers are based on the idea of linear feedback shift registers, and there have been detected vulnerabilities of a lot of algorithms of this class, as there exists a profound mathematical theory on this subject.
 - Most stream ciphers do not propagate errors but are sensible to loss of synchronization.
 - *Block ciphers* work on blocks of width b with b depending on the specific algorithm.
Cryptographic Algorithms – Outline

Cryptographic Algorithms

- Overview
 - Cryptanalysis
 - Properties
- Symmetric En- / Decryption
 - Modes of Operation
 - DES
 - AES
 - RC4
- Asymmetric En- / Decryption
 - Background
 - RSA
 - Diffie-Hellman
 - EIGamal
- Cryptographic Hash Functions
 - MDC’s / MACs
 - MD-5
 - SHA-1
 - CBC-MAC